Mathematical models used to describe the propertiesof magneto-rheological elastomers

Modele matematyczne stosowane do opisu właściwości elastomerów magneto-reologicznych

  • Mateusz Kukla Poznan University of Technology
  • Krzysztof Talaśka Poznan University of Technology
  • Ireneusz Malujda Poznan University of Technology
Keywords: magnetorheological elastomers, mathematical model, intelligent materials

Abstract

The paper presents and discusses mathematical models that are most widely used to describe the properties of magnetorheological elastomers (MREs). Magnetic elastomers are non-traditional engineering materials with an ever increasing number of practical applications in various areas of industry including transport.

References

1. Chen L., Gong X. L., Li W. H.: Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers, 2007, Smart Materials and Structures, vol. 16, no. 6.
2. Chen L., Jerrams S.: A rheological model of the dynamic behavior of magnetorheological elastomers, 2011, Journal of Applied Physics, vol. 110.
3. Davis L. C.: Model of magnetorheological elastomers, 1999, Journal of Applied Physics, vol. 85, no. 6.
4. Derski W., Ziemba S.: Analiza modeli reologicznych, Warszawa 1968, Państwowe Wydawnictwo Naukowe.
5. Du H., Weihua L., Zhang N.: Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator, 2011, Smart Materials and Structures, vol. 20, no. 10.
6. Eem S. H., Jung H. J., Koo J. H.: Modeling of Magneto-Rheological Elastomers for Harmonic Shear Deformation, 2012 IEEE Transactions on Magnetics, vol. 48, no. 11.
7. Elie L., Ginder J., Mark J., Nichols M., US Patent 5 814 999. Method and apparatus for measuring displacement and force, (1998).
8. Fang S., Gong X. L., Zhang X. Z., Zhang P. Q.: Effect of preconfiguration on performance of magnetorheological elastomers, 2005, Electrorheological Fluids and Magnetorheological Suspensions, Proceedings of the Ninth International Conference, China, 29 August – 3 September, 2004, ISBN: 978-981-256-122-0, pp. 134-139.
9. Ginder J. M., Nichols M. E., Elie L. D., Clark S. M.: Controllable-stiffness components based in magnetorheological elastomers, 2000, Proc. SPIE3985, Smart Structures and Materials 2000: Smart Structures and Integrated Systems, vol. 3985.
10. Guo F., Du Ch. Li R.: Viscoelastic Parameter Model of Magnetorheological Elastomers Based on Abel Dashpot, 2014, Advances in Mechanical Engineering, vol. 2014, Article ID 629386.
11. Guth E.: Theory of Filler Reinforcement, 1945, Journal of Applied Physics, vol. 16, is. 1.
12. Jolly M. R., Carlson J. D., Munoz B. C.: A model of the behavior of magnetorheological materials, 1996, Smart Materials and Structures, vol. 5, no. 5, pp. 607-614.
13. Kaleta J., Lewandowski D., Ziętek G.: Inelastic properties of magnetorheological composites: II. Model, identification of parameters, 2007, Smart Materials and Structures, vol. 15, no. 5.
14. Koo J. H., Khan F., Jang D. D., Jung H. J.: Dynamic characterization and modelling of magnetorheological elastomers under compressive loadings, 2009, Journal of Physics: Conference Se-ries, vol. 19, no. 1.
15. Kukla M.: Kształtowanie cech materiałowych elastomerów magnetoreologicznych w budowie maszyn, praca doktorska, Politechnika Poznańska, Poznań 2018.
16. Kukla M., Górecki J., Malujda I., Talaśka K., Tarkowski P.: The Determination of Mechanical Properties of Magnetorheological Elastomers (MREs), Procedia Engineering, vol. 177, p. 324-330, 2017
17. Lewandowski D.: Właściwości tłumiące kompozytów magnetoreologicznych. Badania, modele, identyfikacja, praca doktorska, Politechnika Wrocławska, Wrocław 2005.
18. Li W. H., Zhang X. Z.: A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers, 2010, Smart Materials and Structures, vol. 19, no. 3.
19. Li W., Zhang X., Du H.: Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control, 2012, Journal of Intelligent Material Systems and Structures, vol. 23, no. 9, pp. 1041-1048.
20. Li W. H., Zhou Y., Tian T. F.: Viscoelastic properties of MR elastomers under harmonic loading, 2010, Rheologica Acta, vol. 49, is. 7, pp. 733-740.
21. Shen Y., Golnaraghi M. F., Heppler G. R.: Experimental Re-search and Modeling of Magnetorheological Elastomers, 2004, Journal of Intelligent Material Systems and Structures, vol. 15, no. 1, pp. 27-35.
22. Zając P.: Właściwości tłumiące elastomerów magneto-reologicznych. Badania, modele, identyfikacja, praca doktorska, Politechnika Wrocławska, Wrocław 2014.
23. Zhang W., Gong X. L., Chen L.: A Gaussian distribution model of anisotropic magnetorheological elastomers, 2010, Journal of Magnetism and Magnetic Materials, vol. 322, is. 23, pp. 3797-3801.
24. Zhang X., Li W., Gong X. L: An effective permeability model to predict field-dependent modulus of magnetorheological elasto-mers, 2008, Communications in Nonlinear Science and Numerical Simulation. vol. 13, is. 9, pp. 1910-1916.
25. Yu Y., Li Y., Li. J: Parameter identification of a novel strain stiffen-ing model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization, 2015, Journal of Intelligent Material Systems and Structures, vol. 26, no. 18., pp. 2446-2462.
Published
2019-02-26
Section
Efektywność transportu/Transport efficiency