Optymalizacja transportu publicznego

Optimization of public transport

  • Marzenna Dębowska-Mróz Uniwersytet Technologiczno-Humanistyczny w Radomiu, Wydział Transportu, Elektrotechniki i Informatyki
  • Andrzej Rogowski Uniwersytet Technologiczno-Humanistyczny w Radomiu, Wydział Transportu, Elektrotechniki i Informatyki
Keywords: public transport, timetable, transport network, objective function

Abstract

The article discusses the problem of optimization of public transport. Defined typical issues related to the optimization of public transport, in particular: stages of public transport network planning, way of description of transport network, construction of the objective function, synchronization of timetables, classification of network nodes, methods of solving the task.

References

1. Borndörfer R., Grötschel M., Pfetsch M. E., A Column-Generation Approach to Line Planning in Public Transport. Transportation Science, Vol. 41, No. 1 (February 2007), pp. 123–132, DOI 10.1287/trsc.1060.0161.
2. Borndörfer R., Grötschel M., Pfetsch M. E., Models for Line Planning in Public Transport. ZIB-Report (April 2004), Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, 14195 Ber-lin, Germany.
3. Buba A. T., Lee L. S. A differential evolution for simultaneous transit network design and frequency setting problem, Expert Systems With Applications 106 (2018), pp. 277–289.
4. Cascetta E., Papola A., Marzano V., Simonelli F., Vitiello I., Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data. Transportation Research Part B 55 (2013), pp. 171–187.
5. Ceder A., Net Y. L., Coriat C., Measuring Public Transport Con-nectivity Performance Applied in Auckland, New Zealand. Transportation Research Record: Journal of the Transportation Re-search Board, No. 2111 (2009), Transportation Research Board of the National Academies, Washington, D.C., pp. 139–147. DOI: 10.3141/2111-16.
6. Ceder A., Public-transport vehicle scheduling with multi vehicle type. Transportation Research Part C 19 (2011), pp. 485-497.
7. Ceder A., Tal O., Designing Synchronization into Bus Timetables. Transportation Research Record, Volume: 1760, Issue 1 (2001), pp: 28-33, DOI 10.3141/1760-04.
8. Dębowska-Mróz M., Rogowski A., Analiza zmian natężenia ruchu drogowego na wybranych ciągach komunikacyjnych w Radomiu. Technika Transportu Szynowego – koleje, tramwaje, metro 10 (2013), s. 2953 – 2968.
9. Dębowska-Mróz M., Zawisza T., Ocena napełnienia samochodów osobowych w aspekcie poprawy wykorzystania przestrzeni transportowej w miastach. Autobusy nr 12 (2017), s.1814-1818.
10. Guihaire V., Hao J.-K., Transit network timetabling and vehicle assignment for regulating authorities. Computers & Industrial Engineering 59 (2010), pp. 16–23.
11. Kieu L. M., Bhaskar A., Cools M., Chung E., An investigation of timed transfer coordination using event based multi agent simulation. Transportation Research Part C 81 (2017), pp. 363–378.
12. Liu T., Ceder A., Integrated Public Transport Timetable Synchronization and Vehicle Scheduling with Demand Assignment: A Bi-objective Bi-level Model Using Deficit Function Approach. Transportation Research Procedia 23 (2017), pp. 341–361.
13. Liu Z., Shen J., Wang H., Yang W., Regional Bus Timetabling Model with Synchronization. Journal of Transportation Systems Engineering and Information Technology, Vol. 7, No. 2 (2007), pp. 109 – 112.
14. Mandl Ch. E., Evaluation and optimization of urban public transportation networks, European Journal of Operation Research, Volume 5, Issue 6 (December 1980), pp. 396-404. DOI 10.1016/0377-2217(80)90126-5.
15. Michaelis M, Schöbel A., Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic. Public Transport 1 (2009), pp. 211–232.
16. Nair R., Coffey C., Pinelli F., Calabrese F., Large-Scale Transit Schedule Coordination Based on Journey Planner Requests. Transportation Research Record: Journal of the Transportation Research Board, No. 2351 (2013), Transportation Research Board of the National Academies, Washington, D.C., pp. 65–75. DOI: 10.3141/2351-08.
17. Nishiuchia H., Todorokib T., Kishib Y., 2015. A Fundamental Study on Evaluation of Public Transport Transfer Nodes by Data Envelop Analysis Approach Using Smart Card Data. Transportation Research Procedia 6, pp. 391 – 401.
18. Omar J. Ibarra-Rojas O. J., Yasmin A. Rios-Solis Y. A., Synchro-nization of bus timetabling. Transportation Research Part B 46 (2012), pp. 599-614.
19. Oziomek J., Rogowski A., Improvement of Regularity of Urban Public Transport Lines by Means of Intervals Synchronization, Transport Problems Volume 13, Issue 4 (2018), pp. 91-102, DOI: 10.20858/tp.2018.13.4.9.
20. Schöbel A., An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation. Transportation Research Part C 74 (2017), pp. 348–365.
21. Schöbel A., Line planning in public transportation: models and methods. OR Spectrum 34 (2012), pp 491–510, DOI 10.1007/s00291-011-0251-6.
22. Varga B., Tettamanti T., Kulcsár B., Optimally combined headway and timetable reliable public transport system. Transportation Re-search Part C 92 (2018), pp. 1-26.
23. Wu W., Liu R., Jin W., Designing robust schedule coordination scheme for transit networks with safety control margins, Transportation Research Part B 93A (2016), pp. 495–519.
24. Wu Y., Tang J., Yu Y., Pan Z., A stochastic optimization model for transit network timetable design to mitigate the randomness of traveling time by adding slack time. Transportation Research Part C 52 (2015), pp. 15–31.
25. Xiao M., Chien S., Hu D., Optimizing coordinated transfer with probabilistic vehicle arrivals and passengers’ walking time. Journal of Advanced Transportation 50 (2016), pp. 2306-2322.
26. Sierpiński G., Staniek M., Celiński I., Czech P., Barcik J. Identification of pedestrian travel in modeling of modal split and transport accessibility. Logistyka 4 (2015), pp. 1495–1502.
27. Nishiuchia H., Todorokib T., Kishib Y., A Fundamental Study on Evaluation of Public Transport Transfer Nodes by Data Envelop Analysis Approach Using Smart Card Data. Transportation Re-search Procedia 6 (2015), pp. 391 – 401.
28. Xi H., Son Y.-J., Two-level modeling framework for pedestrian route choice and walking behaviors. Simulation Modelling Practice and Theory 22 (2012), pp. 28–46.
29. Rahman K., Ghani N. A., Kamil A. A., Mustafa A., Chowdhury A. K., Modelling Pedestrian Travel Time and the Design of Facilities: A Queuing Approach. PLOS-ONE, Volume 8 Issue 5, May (2013), e63503, pp. 1–13.
30. Iacono M., Krizek K. J., El-Geneidy A., Measuring non-motorized accessibility: issues, alternatives, and execution. Journal of Transport Geography 18 (2010), pp. 133–140.
31. Serge P., Hoogendoorn S. P., Bovy P. H. L., Pedestrian Travel Behavior Modeling. Networks and Spatial Economics 5 (2005), pp. 193–216.
Published
2021-01-24
Section
Articles