Sterowanie trajektorią podczas lotu akrobacyjnego

Trajectory control during aerobatic flight

  • Tomasz Rogalski Politechnika Rzeszowska im. Ignacego Łukasiewicza, Wydział Budowy Maszyn i Lotnictwa, Katedra Awioniki i Sterowania
  • Jacek Prusik Politechnika Rzeszowska
Keywords: autopilot, aerobatics, spin, Immelmann, simulation, Matlab, X-Plane

Abstract

Paper discusses the problem of automatic flight control during selected aerobatic maneuvers. The exact process of control systems synthesis is discussed in works [13, 20, 21]. The nature of the maneuvers and the range of changes in flight parameters during their performance limit the possibility of using classic autopilot systems, as well as the possibility of obtaining accurate information about the exact aircraft’s spatial orientation. Article presents an alternative approach to the design of automatic aircraft control systems that can be applied in the discussed cases. The mentioned maneuvers were presented from the flight mechanics point of view. As well work shows the structure of control algorithms and the method of verifying their operation in simulation tests.

References

1. Basmadji F.L., Gruszecki J., Rzucidlo P., Kordos D. (2012), Development of Ground Control Station for a Terrain Observer - Hardware in the Loop Simulations, AIAA-2012-4629, AIAA Mod-eling and Simulation Technologies Conference, Minneapolis, US, 13 – 16.08.2012.
2. Bates D., Hagström M. (2007), Nonlinear Analysis and Synthesis Techniques for Aircraft Control, ISBN 978-3-540-73718-6 Springer-Verlag Berlin Heidelberg.
3. Biezad D. (1999), Integrated Navigation and Guidance Systems, AIAA Educational Series, ISBN1563472910.
4. Blajer W., Graffstein J., Krawczyk M. (2009), Modeling of aircraft prescribed trajectory flight as an inverse simulation problem, Modeling Simulation and Control of Nonlinear Engineering Dynamical Systems: State of The Art, Perspectives and Applications, Springer, p.153-162.
5. Blajer W., Graffstein J., Krawczyk M. (2008), Inverse Simulation Study of Aircraft in Prescribed Trajectory Flight, International Re-view of Mechanical Engineering, Nr. 1, Praise Worthy Prize, p.16-25, Naples.Bociek S., Gruszecki J. (1999), Układy sterowania au-tomatycznego samolotem, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów.
6. Chudý, P., Dittrich, P., Rzucidlo, P. (2012), HIL Simulation of a Light Aircraft Flight Control System, Digital Avionics System Conference, AIAA/IEEE Digital Avionics Systems Conference - Proceedings , art. no. 6382395 , pp. 6D11-6D113, Williamsburg, VA, US, 2012, p. 1-11.
7. Dołega B., Rogalski T. (2009), Control System for Medium-Sized Flying Target, Aviation. Vilnius: Technika, 2009, Vol. 13, No. 1 , p.11-16. DOI: 10.3846/1648-7788, Vilnius.
8. Dołega B., Rogalski T. (2009), Control System for Medium-Sized Flying Target, Aviation. Vilnius: Technika, 2009, Vol. 13, No. 1 , p. 11-16. DOI: 10.3846/16487788, Vilnius.
9. Dołęga B, Rogalski T. (2004),The New Conception of The Laboratory Testing of the FBW Control Systems for Small Aircraft, Aircraft Engineering and Aerospace Technology: An International Journal No 3, 2004, Emerland.
10. Kopecki G., Rogalski T. (2014), Aircraft attitude calculation with the use of aerodynamic flight data as correction signals Aero-space Science and Technology, Volume 32, Issue 1, Pages: 267-273, DOI: 10.1016/j.ast.2013.10.009.
11. Krawczyk M., Graffstein J., Maryniak J. (2005), Mathematical Model of UAV in Numerical Simulation of the Recovery Manoeuvres During Perturbed Flight, Journal of Theoretical and Applied Mechanics, Vol 38, No 1, s.121-130, PTMTiS.
12. Kuliberda M. (2015), Implementation of control algorithms for chosen aerobatic figures, diploma work supervised by T. Rogalski, Mechanical Faculty, Rzeszow University of Technology, Rzeszów.
13. Majka M., Rogalski T. (2014), Wykorzystanie oprogramowania Matlab do sterowania w czasie rzeczywistym modelem samolotu w symulatorze lotu, monografia ISBN 978-83-937270-0-1, To-masz M. Majka Publisher, Tarnów.
14. McLean D. (1990), Automatics Flight Control Systems, Prentice Hall International Ltd, Cambridge (UK).
15. McRuer D., Ahkenas I., Graham D. (1973), Aircraft Dynamics and Automatic Control, ISBN 0-691-08083-6,Princeton University Press, Princeton (USA).
16. Milkiewicz A. (2009), Praktyczna aerodynamika i mechanika lotu samolotu odrzutowego w tym wysokomanewrowego, Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, Warszawa.
17. Nowak D., Rogalski T. (2014). Możliwości wykorzystania bezzałogowych statków powietrznych w polskiej przestrzeni powietrznej, Czasopismo Logistyka, Nr 6/2014, str. 7949-7955, ISSN 1231-5478.
18. Park S., Deyst J., How J. (2007)."Performance and Lyapunov Stability of a Nonlinear Path-Following Guidance Method", Journal of Guidance, Control, and Dynamics.
19. Pieniążek J. (2014). Kształtowanie współpracy człowieka z lotniczymi systemami sterowania, Oficyna Wydawnicza Politechniki Rzeszowskiej, ISBN 9788371999127, Rzeszów.
20. Rogalski T. (2018), Unmanned aircraft automatic flight control algorithm in loop manoeuvre, Aircraft engineering and aerospace technology, ISBN/ISSN: 1748-8842, t.90, z.6, p.877-884.
21. Rogalski T., Nowak D., Pruchniak M., Prusik J. (2017), Układ automatycznego wykonywania manewru korkociągu, Autobusy – technika, eksploatacja, systemy transportowe, ISSN: 1509-5878, p. 1245-1251.
22. Rogalski T. (2010). The Control Algorithms for Manoeuvring Flying Target, Scientific Aspects of Unmanned Mobile Vehicles, t.1, s. 177-184, Politechnika Świętokrzyska , Kielce.
23. Rogalski T. (2008), Alternatywne sterowanie ruchem bocznym samolotu, Journal of Aeronautica Integra 1/2008 s. 99-103, Sieć Naukowa Aeronautica Integra, Oficyna Wydawnicza Politechniki rzeszowskiej, Rzeszów.
24. Rogers R., (2007), Applied Mathematics in Integrated Navigation Systems, Third Edition, AIAA Educational series ISBN-13: 978-1563479274.
25. Rzucidlo P., Chudy P., Rydlo K. (2013), Simulation and Prototyping of FCS for Sport Aircraft, Aircraft Engineering and Aerospace Technology, Volume 85 issue 6, Emerald Group Publishing Limited.
26. Rzucidło P. (2013), Unmanned Air Vehicle Research Simulator - Prototyping and Testing of Control and Navigation Systems, Mechatronic Systems and Materials IV, Solid State Phenomena, Vol. 198, Trans Tech Publications Inc., Zurich 2013, pp. 266-274.
27. Seborg D. (2017), Process Dynamics and Control - 4th edition, ISBN10: 1119285917 John Wiley & Sons, Inc.
28. Stevens B., Lewis F. (1995). Aircraft Control and Simulation, Willey & Sons.
29. Suzuki S., Sakamoto Y., Sanematsu Y, Takahara H. (2006) "Analysis of Human Pilot Control Inputs Using Neural Network", Journal of Aircraft, Vol. 43, No. 3 (2006), pp. 793-798. https://doi.org/10.2514/1.16898
30. Thompson P., McRuer D. (1988), "Comparison of the human optimal control and crossover models", Guidance, Navigation and Control Conference, Guidance, Navigation, and Control and Co-located Conferences, https://doi.org/10.2514/6.1988-418.
31. Thompson S. Smith P. (2008), Air Combat Manoeuvres The technique and History of Air Fighting for Flight Simulation, Ian Allan Publishing, ISBN 9781903223949.
32. Trillas, E., Eciolaza, L. (2015), Springer International Publishing Switzerland
33. Wiliams N. (2003), Aerobatics, Airlife publishing Ltd, Great Britain, ISBN 0950454303
34. Zhou K., Doyle J. C. (1998), Essentials of Robust Control, Pren-tice-Hall, London
35. http://www.x-plane.com/. Official webpage of X-Plane simulator environment (contents on 01.05.2018).
36. http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf (contents on 01.06.2015).
Published
2020-03-31
Section
Eksploatacja i Testy/Exploitation and Tests