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A new method for computation of positive realizations of given 
transfer matrices of descriptor linear continuous-time linear systems 
is proposed. Necessary and sufficient conditions for the existence of 
positive realizations of transfer matrices are given. A procedure for 
computation of the positive realizations is proposed and illustrated 
by examples. 
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Introduction 
A dynamical system is called positive if its trajectory starting 

from any nonnegative initial state remains forever in the positive 
orthant for all nonnegative inputs. An overview of state of the art in 
positive systems theory is given in the monographs [2, 13]. Variety 
of models having positive behavior can be found in engineering, 
economics, social sciences, biology and medicine, etc. [2, 13]. 

The determination of the matrices A, B, C, D of the state equa-
tions of linear systems for given their transfer matrices is called the 
realization problem. The realization problem is a classical problem 
of analysis of linear systems and has been considered in many 
books and papers [4-6, 11, 12, 22, 24]. A tutorial on the positive 
realization problem has been given in the paper [1] and in the books 
[2,13,24]. The positive minimal realization problem for linear sys-
tems without and with delays has been analyzed in [3, 7-9, 13-17, 
20, 21, 23]. The existence and determination of the set of Metzler 
matrices for given stable polynomials have been considered in [10]. 
The realization problem for positive 2D hybrid systems has been 
addressed in [19]. For fractional linear systems the realization prob-
lem has been considered in [4, 18, 22, 24]. 

In this paper a new method for determination of positive realiza-
tions of descriptor linear continuous-time systems is proposed. 

The paper is organized as follows. In section 2 some definitions 
and theorems concerning the positive continuous-time linear sys-
tems are recalled. A new method for determination of positive reali-
zations for single-input single-output linear systems is proposed in 
section 3 and for multi-input multi-output systems in section 4. Con-
cluding remarks are given in section 5. 

The following notation will be used:   - the set of real num-

bers, 
mn  - the set of mn  real matrices, 

mn

  - the set of 

mn  real matrices with nonnegative entries and 
1

  nn
, 

nM  - the set of nn  Metzler matrices (real matrices with non-

negative off-diagonal entries), nI - the nn  identity matrix. 

1. Preliminaries 
Consider the continuous-time linear system 

)()()( tButAxtx  ,                         (2.1a) 

)()()( tDutCxty  ,                           (2.1b) 

where 
ntx )( , 

mtu )( , 
pty )(  are the state, 

input and output vectors and 
nnA  , 

mnB  , 
npC  , 

mpD  . 

Definition 2.1. [2, 13] The system (2.1) is called (internally) positive 

if 
ntx )(  and 

pty )( , 0t  for any initial conditions 

nx )0(  and all inputs  
mtu )( , 0t . 

Theorem 2.1. [2, 13] The system (2.1) is positive if and only if 

nMA , 
mnB 

 , 
npC 

 , 
mpD 

 .          (2.2) 

The transfer matrix of the system (2.1) is given by 

DBAsICsT n  1][)( .                       (2.3) 

The transfer matrix is called proper if 
mp

s
DsT 




)(lim                          (2.4) 

and it is called strictly proper if 0D . 

Definition 2.2. [1, 24] The matrices (2.2) are called a positive reali-

zation of )(sT  if they satisfy the equality (2.3). 

Definition 2.3. [1, 24] The matrices (2.2) are called asymptotically 
stable if the matrix A is an asymptotically stable Metzler matrix 
(Hurwitz Metzler matrix). 
Theorem 2.2. [1, 24] The positive realization (2.2) is asymptotically 
stable if and only if all coefficients of the polynomial 

01

1

1 ...]det[)( asasasAsIsp n

n

n

nA  

   (2.5) 

are positive, i.e. 0ia  for 1,...,1,0  ni . 

The positive realization problem can be stated as follows. Given 

a proper transfer matrix )(sT  find its positive realization (2.2). 

Theorem 2.3. [24] If (2.2) is a positive realization of (2.3) then the 
matrices 

1 PAPA , PBB  , 
1CPC , DD          (2.6) 

are also a positive realization of (2.3) if and only if the matrix 
nnP 

  is a monomial matrix (in each row and in each column 

only one entry is positive and the remaining entries are zero). 

Proof. Proof follows immediately from the fact that 
nnP 



 1
 if 

and only if P is a monomial matrix. □ 

2. Computation of positive realizations of descriptor single-
input single-output systems 

Consider the descriptor continuous-time linear system 

)()()( tButAxtxE  ,                        (3.1a) 

)()( tCxty  ,                                 (3.1b) 

where 
ntx )( , 

mtu )( , 
pty )(  are the state, 

input and output vectors and 
nnAE , , 

mnB  , 

npC  , 
mpD  . 

It is assumed that 0det E  and the pencil of ),( AE  is regu-

lar, i.e. 
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0]det[  AEs  for some Cs  (the field of complex numbers).  

(3.2) 
 
Definition 3.1. The descriptor system (3.1) is called (internally) 

positive if 
ntx )( , 

pty )( , 0t  for any consistent 

initial conditions 
nx )0(  and all inputs 

m

k

k
k

dt

tud
tu 

)(
)()(

 for 0t  and qk ,...,1,0 . 

The transfer matrix of the system (3.1) 

)(][)( 1 sBAEsCsT mp                  (3.3) 

can be decomposed in the polynomial part )(sP  and strictly prop-

er part )(sTsp , i.e. 

)()()( sTsPsT sp ,                          (3.4a) 

where 

][...)( 10 ssPsPPsP mpq

q

         (3.4b) 

and 

BAsICsT nsp

1][)(  .                       (3.5) 

First the new method for computation of a positive realization of 
given transfer function will be presented. 
Theorem 3.1. There exists the positive realization 
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, ]100[ C     (3.6) 

of the transfer function 
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1
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01

1
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...

...
)(

dsdsds

msmsm
sT

n

n

n

n

n
sp












            (3.7) 

if and only if 
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, 3.8) 

where ks , nk ,...,1  are the zeros of the denominator 

))...()((...)( 2101

1

1 n

n

n

n ssssssdsdsdssd  


.  (3.9) 

Proof. The proof is given in [6]. 
Remark 3.1. The positive realization (3.6) is asymptotically stable if 
and only if all coefficients of the denominator (3.9) are positive, i.e. 

0kd , 1,...,1,0  nk  [6]. 

Theorem 3.1 and Remark 3.1 can be easily extended to the multi-
input multi-output linear systems [6]. 
Example 3.1. Compute the positive realization (3.6) of the transfer 
function 

6116

74
)(

23

2

01

2

2

3

01

2

2











sss

ss

dsdsds

msmsm
sTsp

.  (3.10) 

The denominator )3)(2)(1(6116)( 23  sssssssd  

has the real zeros 11 s , 22 s , 33 s  and the matrix 

A is Hurwitz of the form 
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s

s

s

A .           (3.11) 

Using (3.8) and (3.10) we obtain 
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B
     (3.12) 

and the matrix C  has the form 

]100[C .                           (3.13) 

The positive asymptotically stable realization of (3.10) is given by 
(3.11) – (3.13). 
It is easy to check that the matrices 
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B̂ , ]114[ˆ C    (3.14) 

are also the positive asymptotically stable realization of the transfer 
function (3.10). 
Theorem 3.2. If the matrices (3.6) are a positive realization of the 
strictly proper transfer function (3.7) then the matrices 

1  ,][  ,
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0
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   (3.15) 
 
are a positive realization of the transfer function (3.3) if and only if 

kP  for qk ,...,1,0 .                      (3.16) 

Proof. Using (3.15) it is easy to verify that 
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(3.17) 

Therefore, the matrices (3.15) are the positive realization of the 
transfer function (3.3). □ 

Remark 3.2. Note that nMA  if 
nB   and the condition 

(3.8) is satisfied. 
Remark 3.3. The positive realization (3.15) is asymptotically stable 

if and only if the matrix nMA  is Hurwitz. 

Example 3.2. Compute the positive realization (3.15) of the transfer 
function  
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6116

194446203
)(

23

234






sss

ssss
sTsp .       (3.18) 

The transfer function (3.18) can be decomposed as follows 

)()()( sTsPsT sp ,                     (3.19a) 

where 

ssPPsP 32)( 10  ,                  (3.19b) 

6116

74
)(

23

2






sss

ss
sTsp .               (3.19c) 

The positive realization of (3.19c) has been computed in Example 
3.1 and has the form given by (3.11) – (3.13). 
The conditions of Theorem 3.2 for the existence of positive realiza-
tion are satisfied since the coefficients of (3.19b) are positive, i.e. 

20 P , 31 P . 

Therefore, by Theorem 3.2 the desired positive realization of the 
transfer function (3.18) has the form 

].32100[  ,
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                          (3.20) 

3. Computation of positive realizations of descriptor MIMO 
systems 

In this section the method presented in section 3 will be extend-
ed to multi-input multi-output linear continuous-time (MIMO) sys-
tems. 

The strictly proper transfer matrix (3.5) can be written in the 
form with common least row denominator 

mkpidsdsdssd
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(4.1) 
or with common least column denominator 

.,...,1  ;,...,1  ,ˆˆ...ˆ)(ˆ

,ˆˆ...ˆ)(ˆ  ,
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sp









































             

(4.2) 
 

Further we shall consider in details only the first case (4.1) since 
the considerations for (4.2) are similar (dual). 

The matrix A  of the desired realization has the form 

]blockdiag[ 1 pAAA  ,               (4.3a) 

where 

in

in

in

i

i

i M

s

s

s

s

A 
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, pi ,...,1 .  (4.3b) 

The matrix B  has the form 

mnp

pmp

m

BB

BB
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2

1

, pi ,...,1 , mk ,...,1

.   (4.4) 
 

The entries of the matrices ikB  are computed in the same way as 

of the matrix B  in section 3 using the equation 
in

iii MSB 

  1
, pi ,...,1 ,                 (4.5a) 

where 
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S
, pi ,...,1 ,  

(4.5b) 
 























1

1

0

iikn

ik

ik

i

m

m

m

M


, pi ,...,1 , mk ,...,1 .      (4.5c) 

The matrix C  is given by 

]blockdiag[ 1 pCCC  , in

iC



1

]100[  .        (4.6) 

 
Theorem 4.1. If the matrices (4.3), (4.4) and (4.6) are a positive 
realization of the strictly proper transfer matrix (4.1) then the matri-
ces 
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(4.7) 
 

are a positive realization of the transfer matrix (3.3) if and only if 
mp

kP 

  for qk ,...,1,0 .                   (4.8) 

Proof. The proof is similar to the proof of Theorem 3.2. 
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From the above considerations we have the following procedure for 
computation of the positive realization (4.7) of the given transfer 

matrix )(sT . 

Procedure 4.1. 

Step 1. Decompose the given matrix )(sT  in the polynomial part 

(3.4b) and strictly proper part (3.5). 

Step 2. Compute the zeros ijs , pi ,...,1 , jnj ,...,1  of 

the denominator )(sd i , pi ,...,1  and find the matri-

ces (4.3b), (4.3a). 

Step 3. Using (4.5b) and (4.5c) compute the matrices iS , iM  

and check the conditions (4.5a). If the conditions (4.5a) 

are satisfied then there exists 
mnpB 

  and the posi-

tive realization of )(sT . 

The desired positive realization is given by (4.7). 
Example 4.1. Compute the positive realization (4.7) of the transfer 
matrix 
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s
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ss
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sT .                         (4.9) 

Using Procedure 4.1 we obtain the following. 
Step 1. The matrix (4.9) can be decomposed in the polynomial 

part 
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2
)( ssP                               (4.10) 

and strictly proper part 
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s

sTsp .                       (4.11) 

Step 2. The zeros of the first denominator 

23)( 2

1  sssd                         (4.12) 

are: 111 s , 212 s  and of the second denominator 

 

3)(2  ssd                            (4.13) 

 321 s . 

Therefore, the matrix A  has the form 
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Step 3. In this case 
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and using (4.5a) we obtain 
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 1212  bB .                                   (4.15c) 

Therefore, the matrix 
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The desired positive realization of (4.9) is given by 
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Now let us consider the strictly proper transfer matrix (4.11) as the 
matrix with least common column denominator 
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sTsp ,                 (4.19) 

where 

9126)3)(33()( 232  sssssssd   (4.20) 

has the zeros: 11 s , 22 s , 33 s . 

Therefore, the matrix A  has the form 
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In this case the matrix B  is given by 
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Using the dual method to the method for computation of the matrix 

B  we obtain 
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C .                          (4.23) 

Therefore, the desired positive realization of (4.9) has the form 
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.
23100
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 (4.24) 

4. Concluding remarks 
A new method for determination of positive realizations of trans-

fer matrices of descriptor linear continuous-time systems has been 
proposed. Necessary and sufficient conditions for the existence of 
the positive realizations have been established (Theorems 3.1, 3.2 
and 4.1). A procedure for computation of the positive realizations 
has been proposed and illustrated by an example (Example 4.1). 
The presented method can be extended to descriptor linear dis-
crete-time systems and to descriptor linear fractional systems. 
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Wyznaczanie dodatnich realizacji deskryptowych  
ciągłych układow liniowych 

W pracy podano nową metodę wyznaczania dodatnich realizacji dla 
zadanych macierzy transmitacji operatorowych deskryptowych( 
singularnych) ciągłych układów liniowych. Sformułowano warunki 
konieczne i wystarczające istnienia dodatnich realizacji dla tej klasy 
deskryptowych ciągłych układów liniowych. Podano procedurę 
wyznaczania tych realizacji. Procedura ta została zlustrowana 
przykładami liczbowymi. 
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